
The Lambda Calculus
Without Tears (Sample)
Contents

Introduction

Part 1: Getting the Vibe

Start Simple

Semantic Hell

Bracket Hell

So What’s the Point?

Part 2: Reduction & Conversion

Beta-Reduction 101

Solutions to Exercises

Background
The Lambda Calculus was a topic I struggled with during my

undergraduate degree. Whilst the effort I invested in the topic paid off in

a big way, I felt hampered by a lack of basic working examples for each

new topic I was introduced to.

There were only two books available on the subject, both of which

described the topic mathematically without any basic examples to ease

someone into it. Given the importance of the Lambda Calculus within

theoretical computer science, this felt wrong to me.

After the topic clicked in my head, I passed the exams and wanted to write

my own guide to the subject for people like me who work best through

examples and real-word explanations.

I began on the first chapter of this endeavour just after I graduated, but

never found time to return to it. Then, there was a burglary in my London

flat where I lost the original Pages document. Thankfully, I’d emailed a PDF

copy of the work to date to a couple of friends which is now all that

remains of this project.

So, in lieu of me ever continuing with it I present the first and only

completed chapter, and a little bit of the second chapter. Happy reading!

The Lambda Calculus

4 | P a g e

Part 1: Getting the Vibe

In this first chapter, we’re going to begin by just getting a feel for what
end of this chapter, you should have a grasp of what a lambda calculus expression looks like, what it
does and how it works. With any luck, you will manage this without becoming an alcoholic.

Start Simple

Let’s kick off with the simplest of terms in the

It takes in “something” and gives the same “something” back.
“!” (lambda) and the “.” represents the input, and the stuff after the “
I put in a cookie, I get back a cookie

The Lambda Calculus Without Tears

Vibe

e’re going to begin by just getting a feel for what the lambda calculus
end of this chapter, you should have a grasp of what a lambda calculus expression looks like, what it

With any luck, you will manage this without becoming an alcoholic.

Let’s kick off with the simplest of terms in the lambda calculus:

!#. #

t takes in “something” and gives the same “something” back. So, the stuff between the Greek lette
” represents the input, and the stuff after the “.” represents our output. So, if

cookie. Simple enough, so what about this:

!#$. #

the lambda calculus is. By the
end of this chapter, you should have a grasp of what a lambda calculus expression looks like, what it

With any luck, you will manage this without becoming an alcoholic.

So, the stuff between the Greek letter
” represents our output. So, if

The Lambda Calculus Without Tears

5 | P a g e

Can you hazard a guess at what it does? Well, it takes in two inputs (which it names ! and "), and it
gives you back the !. The " is never seen again. The In other words, if I put in a cookie and a
doughnut (in that order), I only get the cookie back (What a waste of a doughnut). How about this
one:

#!". "!

This takes in two values (! and "), and returns them both, but in reverse order. Therefore, if we put
in a cookie and a doughnut, we’d get back a doughnut and a cookie.

But, wouldn’t it be better to have a term which let me put in a cookie, and gave me two back? Well,
we can! And, here’s how:

#!. !!

This term takes in one !, and gives you back two. So, if we input one cookie, we get two back! OK,
with that in mind, there’s one more case we need to look at:

#!. !%

This term accepts on input (an !) and returns that ! and also a %. So, if we put in a cookie, we get
back a cookie and a %. I’ve no idea what a % will taste like though!

Semantic Hell

Next up, it’s important to understand that there are varied ways of writing terms. The following two
terms are identical; they’re just two different ways of writing the same thing:

#!". !" ' #!. #". !"

Bracket Hell

There are invisible brackets in every lambda calculus term. Let’s have a look at these two identical
lambda calculus terms:

!"% ' (((!)")%)

Notice how the brackets associate with the leftmost elements in the term? Mathematicians would
say that bracketing is left-associative. In the world of the lambda calculus, it’s cooler to be on the
left than the right. Always remember this, and you’ll be a hit at parties! (OK, I might be lying a bit
there). Anyway, Let’s see another example:

The Lambda Calculus Without Tears

6 | P a g e

!"# % &!"'#
!"# (!&"#'

The above example shows another case of bracketing issues. The top two terms are identical to each
other, but the bottom two terms are not identical to each other. Really, burn this idea into your
mind, ‘cause it’s really, really important.

So What’s the Point?

If you’ve made it this far, well done; let’s take a breather and ask “what the hell does all this mean?”.
Well, all we’re doing is creating a mathematical way of representing computer programs. For
example, consider the following bit of Java code, which is a method called giveZero:

1 public int giveZero(int input)
2 {
3 return 0;
4 }

We can see that giveZero takes in any number as input (line 1), but always returns 0 (line 3),
completely ignoring the input. Here’s an equivalent function in the lambda calculus:

)!. +,-.

There we go, it takes in something (which it calls !) and returns +,-.. It doesn’t matter what ! is.
We could input a nuclear bomb, and we’d still get a +,-. back. (don’t worry yet about how +,-.
is represented in the lambda calculus. Just treat it as another element just like an ! or a " for now).

So, have I convinced you that the lambda calculus is simply a mathematical representation for
programs? If so, take a breather to digest the following ideas before progressing any further:

• Lambda calculus terms are computer programs (or functions/methods if you prefer).

• Lambda calculus terms can have an input and an output.

Once you feel comfortable with these basic ideas, we’re ready to learn how we can run these
programs.

The Lambda Calculus Without Tears

7 | P a g e

Part 2: Reduction & Conversion

Beta-Reduction 101

If each lambda calculus term is a program, then how do we run these programs? This is the process
known as reduction, (or beta-reduction to give it its proper title).

Let’s have a look at an example. Remember our program from earlier; the one which can duplicate
things such as cookies and doughnuts? Here it is again:

!". ""

Now, let’s say we want to run our program, providing a doughnut as an input, here’s what the
process looks like:

$!". ""% '()*+,)- ./ '()*+,)- '()*+,)-

OK, please don’t panic like I did when I first saw something like this! I’m going to explain everything
in the above statement, piece by piece.

To start with, just get the following idea: That the bit to the left of the “./” is the program before

it’s run, and the bit to the right of the “./” is the result of the program after it’s finished working its

magic.

We already know that the term !". "" takes in some input, and returns two copies. See how when
we apply our term $!". ""% to a '()*+,)-, and then beta-reduce the whole thing, it gives us two
'()*+,)-s back in return? In other words, the thing (in this case: '()*+,)-) which comes after
the bit which is the program (i.e. $!". ""%) is the value that is being inputted into the program.

So, what does the “./” mean? Well, this can be read as “reduces to”, and implies the point where

we evaluate the expression on the left to get the one on the right. Or, to put it another way, this is
where we run our program! Shall we have a look at another example then?

$!"0). "1)% 23*4(, +567-48 593*5-(8 ./ 23*4(, 1 593*5-(8

So, what’s going on this time? Our ‘program’ ($!"0). 01"%) takes in three inputs, and returns three
outputs. The inputs are named ", 0 and) respectively. The program returns ", 1 and) in that order.

In the above example, we input 23*4(, , +567-48 and 593*5-(8 , we get back 23*4(, , 1 and
593*5-(8. Can you see what’s happening? Our function replaces the middle of the three inputs with
1. Seeing as 1 is not defined as an input, it just remains as a 1.

The Lambda Calculus Without Tears

8 | P a g e

OK, one more example then:

!"#$%. $$##')*+,- ./,0, 12*34 5-672+ 89 ./,0, ./,0,)*+,-)*+,- 5-672+

A little bizarre on first glance? Consider that the function !"#$%. $$##' only accepts three
arguments, which it names #, $ and %. Now look at the next part: ‘)*+,- ./,0, 12*34 5-672+’.
Notice how we try to input four arguments into our function? So, when we beta-reduce, our
function just ignores the fourth argument (5-672+), leaving it just where it is, untouched.

With all this in mind, can you work out what the following lambda calculus term reduces to? The
answer is at the end of the documenti:

!"#$%. #/%%$##'7 2 3 ! 89 ?

Small Hint: Try using a pen and paper to write down the substitutions for the three inputs #, $ and %.
Bigger Hint: The / stays the same in the output, because it is not specified as an input parameter.
Even Bigger Hint: The ‘!’ will just be added to the end of the output, as the function only accepts three inputs,
and we are giving four arguments (the ‘!’ being the fourth).
Good Advice: Don’t panic, It’s way easier than it looks on first glance!

Now, here’s the pinch. Because these examples are relatively simple, we can work out how to
reduce them in our heads, and intuit what the output should be. Sadly, not all terms are so straight
forward, and therefore we need a formal way of performing the beta-reduction, so we can do more
complex reductions.

Solutions to Exercises

